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In this Response Letter we prove a formula that was given as eq. (52*) in the original

version of our article on “Unobserved population heterogeneity: A review of formal rela-

tionships” (Vaupel and Missov, 2014). In doing so, we also prove some related formulas.

We had learned, based on feedback from Joshua Goldstein and Cosmo Strozza, that

our proof of eq. (52*) was inadequate. We then discovered that proof depended on a

restrictive assumption. We corrected the article by deleting eq. (52*) and providing an

alternative, more general expression, which we labeled eq. (39*). (In the article, we put

an asterisk after an equation number if proof of the equation had not previously been

published; we follow this practice in this Letter.)

The formula we deleted was:

ρ̄(x, y) = ρ(x, y)[s̄c(x, y)]γ , (1*)

where ρ̄(x, y) is the observed rate of progress in reducing the force of mortality in a pop-

ulation cohort at age x and at some time y, ρ(x, y) is the unobserved rate of progress in

reducing the force of mortality for each and every individual in the population, s̄c(x, y)

is cohort survivorship to age x in year y, and γ is the squared coefficient of variation of

gamma-distributed frailty. We failed to state the key assumption that
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ρ(a, y − x + a) = ρ(x, y), 0 ≤ a ≤ x ,

i.e., that the rate of progress on the individual level is constant over age for the individuals

born at time y − x. Given this assumption in the context of gamma-distributed fixed

frailty, eq. (1*) can be proven as follows.

Proof. Consider the basic fixed-frailty relationship

µ̄(x, y) = z̄(x, y)µ(x, y) , (2)

where µ̄(x, y) is the population force of mortality at age x in year y, µ(x, y) is the cor-

responding force of mortality for the standard individual, and z̄(x, y) denotes the aver-

age gamma-distributed frailty at age x of individuals born in y − x. Eq. (2) is the two-

dimensional equivalent of eq. (16) in the article. Taking relative derivatives with respect

to time and reversing signs leads to

ρ̄(x, y) = ρ(x, y)− 1
z̄(x, y)

∂z̄(x, y)
∂y

. (3*)

Eq. (31) of the article provides an expression for z̄ for fixed-frailty models when frailty is

gamma distributed; the two-dimensional form of eq. (31) is

z̄(x, y) = (1 + γHc(x, y))−1 . (4)

where Hc(x, y) is the cumulative hazard at age x for the cohort born at time y − x. Substi-

tuting (4) in (3*) leads to

ρ̄(x, y) = ρ(x, y) +
γ

∂Hc(x,y)
∂y

1 + γHc(x, y)
= ρ(x, y) +

γ
x∫

0

∂µ(a,y−x+a)
∂y da

1 + γHc(x, y)
=

= ρ(x, y)−
γ

x∫
0

ρ(a, y − x + a)µ(a, y − x + a)da

1 + γHc(x, y)
. (5)

Assuming ρ(a, y − x + a) = ρ(x, y) for 0 ≤ a ≤ x, yields
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x∫
0

ρ(a, y − x + a)µ(a, y − x + a)da = ρ(x, y)
x∫

0

µ(a, y − x + a)da = ρ(x, y)Hc(x, y) ,

and consequently

ρ̄(x, y) =
ρ(x, y)(1 + γHc(x, y))− γρ(x, y)Hc(x, y)

1 + γHc(x, y)
. (6)

Simplification of (6) gives

ρ̄(x, y) =
ρ(x, y)

1 + γHc(x, y)
. (7*)

Substitution in (7*) of the two-dimensional version of eq. (33) of the article,

s̄c(x, y) = (1 + γHc(x, y))−
1
γ , (8)

completes the proof of (1*), the expression we set out to prove,

ρ̄(x, y) = ρ(x, y)[s̄c(x, y)]γ .

Extension. Suppose ρ(x, y) varies with age as well as time. Then combining equations (5)

and (8) leads to

ρ̄(x, y) = ρ(x, y)[s̄c(x, y)]γ +
(ρ(x, y)− ρ̃(x, y)) γHc(x, y)

1 + γHc(x, y)
, (9)

where

ρ̃(x, y) =

x∫
0

ρ(a, y − x + a) µ(a, y − x + a) da

x∫
0

µ(a, y − x + a) da
(10)

is the weighted average value of the rates of progress up until age x for the cohort born

at time y − x. Then (9) can be rewritten as

3



ρ̄(x, y) = ρ(x, y)[s̄c(x, y)]γ +
(ρ(x, y)− ρ̃(x, y)) (1 + γHc(x, y)− 1)

1 + γHc(x, y)

= ρ(x, y)[s̄c(x, y)]γ + (ρ(x, y)− ρ̃(x, y))(1 − [s̄c(x, y)]γ) . (11*)

If ρ(x, y)− ρ̃(x, y) ≈ 0, which might be the case at older ages, or 1− [s̄c(x, y)]γ ≈ 0, which

might be the case at younger ages, especially if γ ≈ 0.2 or some other small value, then

ρ̄(x, y) ≈ ρ(x, y)[s̄c(x, y)]γ . (12*)

Equation (1*) implies

ρ̄(x, y)
ρ(x, y)

= [s̄c(x, y)]γ . (13)

For instance, if s̄c(x, y) = 0.01 and γ = 0.2, then ρ̄(x,y)
ρ(x,y) = 0.4, i.e. the observed rate of

progress in reducing population death rates is only 40% of the rate of progress on the

individual level. More generally, because survivorship is less than one and γ is positive,

eq. (1*) implies that the age-specific pace of progress in reducing mortality over time is

always less for a population than for the individuals who comprise the population. This

is an important theoretical conclusion. We hope that the equations presented in this Letter

will also lead to empirical results about the values of ρ(x, y).
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